feat: new post on set theory
This commit is contained in:
BIN
content/media/set-theory.webp
Normal file
BIN
content/media/set-theory.webp
Normal file
Binary file not shown.
After Width: | Height: | Size: 651 KiB |
356
content/set_theory.md
Normal file
356
content/set_theory.md
Normal file
@@ -0,0 +1,356 @@
|
|||||||
|
---
|
||||||
|
title: Set Theory
|
||||||
|
date: 2024-12-28
|
||||||
|
description: Personal notes on Set Theory
|
||||||
|
author: nullndr
|
||||||
|
tags:
|
||||||
|
- math
|
||||||
|
- notes
|
||||||
|
extra:
|
||||||
|
math: true
|
||||||
|
banner_image: media/set-theory.webp
|
||||||
|
---
|
||||||
|
|
||||||
|
# Set Theory
|
||||||
|
|
||||||
|
Set theory is the **fundamental block** on which the entire mathematics is built upon. It has been generalized only in 1870s from [Georg Cantor](https://en.wikipedia.org/wiki/Georg_Cantor).
|
||||||
|
|
||||||
|
Even if the set theory is a quite recently mathematical branch, it preceeds all other branches: arithmetic studies the set of natural number; algebra studies the set of rational and real numbers and geometry studies sets of points, like segments.
|
||||||
|
|
||||||
|
Set theory was born as a necessity to formulate a general theory in order to organize all mathematicals theories.
|
||||||
|
|
||||||
|
## What is a set?
|
||||||
|
|
||||||
|
A set is a **collection** of unique elements, the order of these unique elements does not matter.
|
||||||
|
|
||||||
|
These elements are also called **members** of the set.
|
||||||
|
|
||||||
|
> The set concept is __primitive__: it is not possible to define it with more simpler concepts.
|
||||||
|
|
||||||
|
We can find sets in our every day life, for example the set of books a library has, the set of libraries in a city, the set of cities in a country ecc.
|
||||||
|
|
||||||
|
A set can have a finite number of elements, like the books inside a library, or an infinite number of elements.
|
||||||
|
|
||||||
|
A set with an infinite number of elements is called an __infinite set__.
|
||||||
|
|
||||||
|
Two special sets are defined: the [[empty set|#empty-set]] and the [[universe set|#universe-set]].
|
||||||
|
|
||||||
|
### Empty set
|
||||||
|
|
||||||
|
The empty set, denotated with $\\{\\}$ or with the $\varnothing$ symbol, is a special set that has no element.
|
||||||
|
|
||||||
|
### Universe set
|
||||||
|
|
||||||
|
The universal set, denoted by $U$, is a set that has as elements all unique elements of all related sets.
|
||||||
|
|
||||||
|
## Notations
|
||||||
|
|
||||||
|
Before going further inside the set theory, it is worth introducing the notations for them.
|
||||||
|
|
||||||
|
Sets are typically denotated by an italic capital letter, like $A$, $B$, $C$ etc.
|
||||||
|
|
||||||
|
To list the elements of a given set the enumeration notation is used. This list the elements of a set between curly braces. For example, to reppresent the set $A$ of all natural numbers less than 8 we write the following:
|
||||||
|
|
||||||
|
$$ A = \\{ 1, 2, 3, 4, 5, 6, 7 \\} $$
|
||||||
|
|
||||||
|
## Element membership
|
||||||
|
|
||||||
|
We denotate that an element is a member of a given set with the $\in$ symbol: given the previous set $A$, we write that
|
||||||
|
|
||||||
|
$$ 1 \in A $$
|
||||||
|
|
||||||
|
This can be read as 1 is a member of set $A$, or 1 is inside set $A$.
|
||||||
|
|
||||||
|
The symbol $\notin$ is the opposite of the $\in$ symbol, it denotates an element that is not a member of a given set: given the previous set $A$, we write that
|
||||||
|
|
||||||
|
$$ 8 \notin A $$
|
||||||
|
|
||||||
|
> Indeed the $A$ set definition was "the set of all natural numbers less than 8"
|
||||||
|
|
||||||
|
This can be read as 8 is not a member of set $A$, or 8 is not inside the set $A$.
|
||||||
|
|
||||||
|
If two sets $A$ and $B$ contain the same elements we define them as **equal**, denoted by $$ A = B $$
|
||||||
|
|
||||||
|
$$
|
||||||
|
\begin{aligned}
|
||||||
|
A &= \\{ 1, 2 \\} \\\\
|
||||||
|
B &= \\{ 2, 1 \\} \\\\
|
||||||
|
A &= B
|
||||||
|
\end{aligned}
|
||||||
|
$$
|
||||||
|
|
||||||
|
|
||||||
|
## Cardinality
|
||||||
|
|
||||||
|
In set theory, the cardinality of a given set $A$ is the number of elements inside the set itself, denoted with $\mid A \mid$.
|
||||||
|
|
||||||
|
$$
|
||||||
|
\begin{aligned}
|
||||||
|
A &= \\{ \text{blue}, \text{red}, \text{green}, \text{yellow} \\} \\\\
|
||||||
|
\mid A \mid &= 4
|
||||||
|
\end{aligned}
|
||||||
|
$$
|
||||||
|
|
||||||
|
The empty set $\varnothing$ has a cardinality of $0$.
|
||||||
|
|
||||||
|
$$
|
||||||
|
\begin{aligned}
|
||||||
|
\mid \varnothing \mid &= 0
|
||||||
|
\end{aligned}
|
||||||
|
$$
|
||||||
|
|
||||||
|
> The cardinality of a set may also be denoted by $card(A)$ or $n(A)$
|
||||||
|
|
||||||
|
## Subsets and supersets
|
||||||
|
|
||||||
|
Between two sets there may exist a relation called **set inclusion**: if all elements inside set $A$ are also elements of $B$, then $A$ is a subset of $B$, denoted with $A \subseteq B$.
|
||||||
|
|
||||||
|
$$
|
||||||
|
\begin{aligned}
|
||||||
|
A &= \\{ 2, 3, 4 \\} \\\\
|
||||||
|
B &= \\{ 1, 2, 3, 4, 5 \\} \\\\
|
||||||
|
A &\subseteq B
|
||||||
|
\end{aligned}
|
||||||
|
$$
|
||||||
|
|
||||||
|
When $A$ is a subset of $B$, we can define $B$ as a superset of $A$, denoted with $B \supseteq A$.
|
||||||
|
|
||||||
|
$$
|
||||||
|
\begin{aligned}
|
||||||
|
A &= \\{ 2, 3, 4 \\} \\\\
|
||||||
|
B &= \\{ 1, 2, 3, 4, 5 \\} \\\\
|
||||||
|
B &\supseteq A
|
||||||
|
\end{aligned}
|
||||||
|
$$
|
||||||
|
|
||||||
|
If the set inclusion relation does not exist between two sets, then we can define $A$ as not being a subset of $B$, formally $A \not\subseteq B$, same for $B$ not being a superset of $A$: $B \not\supseteq A$.
|
||||||
|
|
||||||
|
Given the above definition, a set is always a subset of itself, but there may be cases where we would like to reject this definition.
|
||||||
|
|
||||||
|
For these cases we can define the term __proper subset__: the set $A$ is a proper subset of $B$ only if $A$ is a subset of $B$ and $A$ is not equal to $B$.
|
||||||
|
|
||||||
|
We denote the fact that a set $A$ is a proper subset of $B$ with the symbol $\subset$.
|
||||||
|
|
||||||
|
$$
|
||||||
|
\begin{aligned}
|
||||||
|
A &= \\{ 2, 3, 4 \\} \\\\
|
||||||
|
B &= \\{ 1, 2, 3, 4, 5 \\} \\\\
|
||||||
|
A &\subset B
|
||||||
|
\end{aligned}
|
||||||
|
$$
|
||||||
|
|
||||||
|
Likewise we denote a set $B$ being a proper superset of $A$ with the symbol $\supset$.
|
||||||
|
|
||||||
|
$$
|
||||||
|
\begin{aligned}
|
||||||
|
A &= \\{ 2, 3, 4 \\} \\\\
|
||||||
|
B &= \\{ 1, 2, 3, 4, 5 \\} \\\\
|
||||||
|
B &\supset A
|
||||||
|
\end{aligned}
|
||||||
|
$$
|
||||||
|
|
||||||
|
Note that the empty set $\varnothing$ is a proper subset of any set except itself.
|
||||||
|
|
||||||
|
# Operations
|
||||||
|
|
||||||
|
Just like algebra has his operations on numbers, sets have their own operations.
|
||||||
|
|
||||||
|
## Union
|
||||||
|
|
||||||
|
The union of two or more sets is a set that contains all elements in the given sets, with no duplicated element.
|
||||||
|
|
||||||
|
It's denotated with the $\cup$ symbol.
|
||||||
|
|
||||||
|
$$
|
||||||
|
\begin{aligned}
|
||||||
|
A &= \\{ 2, 4, 6 \\} \\\\
|
||||||
|
B &= \\{ 2, 3, 5 \\} \\\\
|
||||||
|
A \cup B &= \\{ 2, 3, 4, 5, 6 \\}
|
||||||
|
\end{aligned}
|
||||||
|
$$
|
||||||
|
|
||||||
|
The union is both commutative and associative
|
||||||
|
|
||||||
|
$$
|
||||||
|
\begin{aligned}
|
||||||
|
A \cup B &= B \cup A \\\\
|
||||||
|
A \cup (B \cup C) &= (A \cup B) \cup C
|
||||||
|
\end{aligned}
|
||||||
|
$$
|
||||||
|
|
||||||
|
and has two neutral elements: the $\varnothing$ set and the set itself
|
||||||
|
|
||||||
|
$$
|
||||||
|
\begin{aligned}
|
||||||
|
A \cup \varnothing &= A \\\\
|
||||||
|
A \cup A &= A
|
||||||
|
\end{aligned}
|
||||||
|
$$
|
||||||
|
|
||||||
|
## Intersection
|
||||||
|
|
||||||
|
The intersection of two or more sets is a set that contains all elements that belongs in all given sets.
|
||||||
|
|
||||||
|
It's denotated with the $\cap$ symbol.
|
||||||
|
|
||||||
|
$$
|
||||||
|
\begin{aligned}
|
||||||
|
A &= \\{ 2, 4, 6 \\} \\\\
|
||||||
|
B &= \\{ 2, 3, 5 \\} \\\\
|
||||||
|
A \cap B &= \\{ 2 \\}
|
||||||
|
\end{aligned}
|
||||||
|
$$
|
||||||
|
|
||||||
|
Like union, the intersection is both commutative and associative
|
||||||
|
|
||||||
|
$$
|
||||||
|
\begin{aligned}
|
||||||
|
A \cap B &= B \cap A \\\\
|
||||||
|
A \cap (B \cap C) &= (A \cap B) \cap C
|
||||||
|
\end{aligned}
|
||||||
|
$$
|
||||||
|
|
||||||
|
It has only one neutral element: the set itself
|
||||||
|
|
||||||
|
$$
|
||||||
|
A \cap A = A
|
||||||
|
$$
|
||||||
|
|
||||||
|
While the $\varnothing$ set is the absorbing element of the intersection, because the intersection of any set with the $\varnothing$ set results in the $\varnothing$ set
|
||||||
|
|
||||||
|
$$
|
||||||
|
A \cap \varnothing = \varnothing
|
||||||
|
$$
|
||||||
|
|
||||||
|
## Set Difference
|
||||||
|
|
||||||
|
The set difference of two sets $A$ and $B$ is a set that contains all elements of $A$ that are not inside $B$.
|
||||||
|
|
||||||
|
It's denotated with the $−$ symbol and is formally defined as $A − B = \\{ x ∣ x \in A : x \notin B \\}$
|
||||||
|
|
||||||
|
$$
|
||||||
|
\begin{aligned}
|
||||||
|
A &= \\{ 2, 4, 6 \\} \\\\
|
||||||
|
B &= \\{ 2, 3, 5 \\} \\\\
|
||||||
|
A - B &= \\{ 4, 6 \\}
|
||||||
|
\end{aligned}
|
||||||
|
$$
|
||||||
|
|
||||||
|
The set difference is not commutative, indeed
|
||||||
|
|
||||||
|
$$
|
||||||
|
\begin{aligned}
|
||||||
|
A - B &= \\{ 4, 6 \\} \\\\
|
||||||
|
B - A &= \\{ 3, 5 \\}
|
||||||
|
\end{aligned}
|
||||||
|
$$
|
||||||
|
|
||||||
|
The set difference has three absorbing elements:
|
||||||
|
|
||||||
|
$$
|
||||||
|
\begin{aligned}
|
||||||
|
A - A &= \varnothing \\\\
|
||||||
|
A - U &= \varnothing
|
||||||
|
\end{aligned}
|
||||||
|
$$
|
||||||
|
|
||||||
|
The $\varnothing$ set is both the neutral element and one of the absorbing element of the set difference
|
||||||
|
|
||||||
|
$$
|
||||||
|
A - \varnothing = A \\\\
|
||||||
|
\varnothing - A = \varnothing
|
||||||
|
$$
|
||||||
|
|
||||||
|
## Symmetric Difference
|
||||||
|
|
||||||
|
The symmetric difference of two sets or more sets, also called __disjunctive union__, is a set that contains all unique elements of a set that are not inside the other sets.
|
||||||
|
|
||||||
|
It's defined as the union of the set difference $A − B$ with the set difference $B − A$
|
||||||
|
|
||||||
|
$$
|
||||||
|
\begin{aligned}
|
||||||
|
A &= \\{ 1, 2, 5, 6 \\} \\\\
|
||||||
|
B &= \\{ 2, 3, 4, 7 \\} \\\\
|
||||||
|
(A − B) \cup (B − A) &= \\{ 1, 3, 4, 5, 6, 7 \\}
|
||||||
|
\end{aligned}
|
||||||
|
$$
|
||||||
|
|
||||||
|
> The $\vartriangle$ symbol is also used to represent symmetric difference
|
||||||
|
|
||||||
|
The symmetric difference is both commutative and associative
|
||||||
|
|
||||||
|
$$
|
||||||
|
\begin{aligned}
|
||||||
|
A &= \\{ 1, 2, 5, 6 \\} \\\\
|
||||||
|
B &= \\{ 2, 3, 4, 7 \\} \\\\
|
||||||
|
A \vartriangle B &= B \vartriangle A \\\\
|
||||||
|
(A \vartriangle B) \vartriangle C &= A \vartriangle (B \vartriangle C)
|
||||||
|
\end{aligned}
|
||||||
|
$$
|
||||||
|
|
||||||
|
The $\varnothing$ set is the neutral element of the symmetric difference
|
||||||
|
|
||||||
|
$$
|
||||||
|
A \vartriangle \varnothing = A
|
||||||
|
$$
|
||||||
|
|
||||||
|
While the absorbing element is the set itself
|
||||||
|
|
||||||
|
$$
|
||||||
|
A \vartriangle A = \varnothing
|
||||||
|
$$
|
||||||
|
|
||||||
|
## Cartesian Product
|
||||||
|
|
||||||
|
The cartesian product of two sets $A$ and $B$, denoted by $A \times B$, is a set of ordered pairs $(a,b)$ where $a$ is an element of $A$, and $b$ is an element of $B$.
|
||||||
|
|
||||||
|
Formally it is defined as $A \times B = \\{ (a,b) ∣ a \in A, b \in B \\}$.
|
||||||
|
|
||||||
|
$$
|
||||||
|
\begin{aligned}
|
||||||
|
A &= \\{ 1, 2 \\} \\\\
|
||||||
|
B &= \\{ 3, 4, 5 \\} \\\\
|
||||||
|
A \times B &= \\{ (1,3), (1,4), (1,5), (2,3), (2,4), (2,5) \\}
|
||||||
|
\end{aligned}
|
||||||
|
$$
|
||||||
|
|
||||||
|
The cartesian product is not commutative, because $A \times B$ is not the same as $B \times A$
|
||||||
|
|
||||||
|
$$
|
||||||
|
\begin{aligned}
|
||||||
|
A &= \\{ 1, 2 \\} \\\\
|
||||||
|
B &= \\{ 3, 4 \\} \\\\
|
||||||
|
A \times B &= \\{ (1,3), (1,4), (2,3), (2,4) \\} \\\\
|
||||||
|
B \times A &= \\{ (3,1), (3,2), (4,1), (4,2) \\}
|
||||||
|
\end{aligned}
|
||||||
|
$$
|
||||||
|
|
||||||
|
> Remember that the order inside a pair matter
|
||||||
|
|
||||||
|
The cartesian produt of a set by the set itself is denoted by $A \times A$ or $A^2$.
|
||||||
|
|
||||||
|
The absobing element of the cartesian product is the $\varnothing$ set
|
||||||
|
|
||||||
|
$$
|
||||||
|
A \times \varnothing = \varnothing
|
||||||
|
$$
|
||||||
|
|
||||||
|
## Complement
|
||||||
|
|
||||||
|
The complement of a set $A$, denoted by $A^\complement$ is the set difference of the universal set $U$ with $A$.
|
||||||
|
|
||||||
|
It is formally defined as $A^\complement = \\{ x ∣ x \in U \land x \not\in A \\}$
|
||||||
|
|
||||||
|
$$
|
||||||
|
\begin{aligned}
|
||||||
|
U &= \\{ 1, 2, 3, 4, 5, 6, 7, 8, 9 \\} \\\\
|
||||||
|
A &= \\{ 1, 3, 5, 7, 9 \\} \\\\
|
||||||
|
A^\complement = U − A &= \\{ 2, 4, 6, 8 \\}
|
||||||
|
\end{aligned}
|
||||||
|
$$
|
||||||
|
|
||||||
|
The complement of the complement a set $A$, denoted by $(A^\complement)^\complement$ is the set $A$ itself.
|
||||||
|
|
||||||
|
The union of set $A$ with the complement of itself results in the universal set $U$: $A \cup A^\complement=U$.
|
||||||
|
|
||||||
|
The intersection of set $A$ with the complement of itself results in the $\varnothing$ set: $A \cap A^\complement = \varnothing$.
|
Reference in New Issue
Block a user